SPOT4 (Take 5) first validation and application results

O.Hagolle CESBIO/CNES, M.Huc CESBIO/CNRS, M.Kadiri CESBIO/THEIA; J.Inglada CESBIO/CNES, C. Marais-Sicre CESBIO/CNRS, J.Osman CESBIO/CNES (PhD), C.Dechoz, CNES, V.Poulain THALES-IS, J. Cros, CESBIO/CNRS, I.Rodes CESBIO/CNES (PhD)

October 2nd, 2013

Outline

Validation results

- Ortho-rectification
- Cloud masks
 - Lessons learned about observed nebulosity
- Aerosols and Atmospheric correction

New product

- Level 3A development and first tests on SPOT4 (Take5) data
 - to define Sentinel-2 L3A product at THEIA

Some applications

- Large area Land cover maps with automatic supervision
- Fast test on SudMiPy site, to be generalized to several sites

L1C Ortho-rectification

Ortho-rectification

- Old SPOT4 had poor location performances (errors up to 1500m)
- Landsat 5 or 7 used as reference for automatic GCP extraction
 - Next version : Geo-Sud RapidEye images in France, and LANDSAT 8 elsewhere
- Good overall registration performances : 80% of measures within 0.5 pixel
- 4 sites with poor performances, up to 10 pixels
 - Cloudy sites with uniform equatorial forests in flat areas
 - Sumatra (JRC), Borneo (JRC), Gabon (ESA), Congo(ESA))

Sumatra

L2A Masks : Clouds, Shadows, Water, Snow

L2A Masks : Clouds, Shadows, Water, Snow

L2A Masks : Clouds, Shadows, Water, Snow

Morocco Tensift

Belgium

Congo (1)

Lessons learned

- Very nice time series over a lot of sites :
 - Morocco, Provence, Paraguay, Angola, Maricopa, Congo...
- Not far from 1 clear observation/month for most sites
 - Despite bad weather in Europe
 - Except in Belgium, Alsace, Aquitaine, or even Tunisia
 - And with exceptions in Equatorial regions
- Big sites always have clouds
 - Necessity to develop methods which are robust to data gaps
 - Composite products should be useful (Level 3A)

Lessons learned

Cloud Free Observations

- Very nice time series over a lot of sites :
 - Morocco, Provence, Paraguay, Angola, Maricopa, Congo...
- Not far from 1 clear observation/month for most sites
 - Despite bad weather in Europe
 - Except in Belgium, Alsace, Aquitaine, or even Tunisia
 - And with exceptions in Equatorial regions
- Big sites always have clouds
 - Necessity to develop methods which are robust to data gaps
 - Composite products should be useful (Level 3A)

Message

 With 10 days repetitivity, SPOT4(Take5) would have failed in Western Europe

ESBID

- Necessity to launch S2-B shortly after S2-A
- Next S2 generation should consider increased repetitivity

Atmospheric correction

Atmospheric correction

- takes into account :
 - Absorption
 - Scattering by molecules and aerosols
 - Aerosol parameters are estimated
 - Adjacency effects
 - Illumination effects due to topography

Aerosol estimation method (MACCS)

- No blue band in SPOT satellites
- Use of a multi-temporal method to estimate aerosol content
 - two successive L2A images should be similar (at 200 m resolution)
- Aerosol model is constant per site

Aerosol maps with SPOT4(Take5)

Aerosol maps with SPOT4(Take5)

Aerosol maps with SPOT4(Take5)

Atmospheric correction

Aerosol Validation

- Aerosol validation sites with a cimel nearby
 - Europe : Arcachon, Carpentras, Seysses, Le Fauga, Palaiseau, Paris, Kyiv
 - Africa : Saada, Ouarzazate (Morocco), Ben salem(Tunisia)
 - USA : Wallops, Cart Site
 - Asia : Gwangjiu, Korea

Atmospheric correction

Aerosol Validation

- Aerosol validation sites with a cimel nearby
 - Europe : Arcachon, Carpentras, Seysses, Le Fauga, Palaiseau, Paris, Kyiv
 - Africa : Saada, Ouarzazate (Morocco), Ben salem(Tunisia)
 - USA : Wallops, Cart Site
 - Asia : Gwangjiu, Korea

Surface Reflectance validation

- ▶ NASA compared MODIS and Take5 Surface reflectances for cloud free pixels
 - On Maricopa site, at 5 km resolution, using 25 dates
 - A directional effect correction is necessary (Vermote 2009)
 - Excellent agreement that validates Cloud Masks and atmospheric corrections
 - (M.Claverie, E.Vermote J.Masek)

Level 3A

Monthly (or fortnightly) composite of cloud free surface reflectances

- Based on level 2A products, acquired within N days from the composite date
- Weighted average of cloud free pixels
 - More weight to low cloud cover images
 - Less weight close to a cloud
 - Less weight when high aerosol content
- ▶ SPOT4 (Take5) is perfect for testing these methods in view of F2
 - 45 sites with different conditions
 - 4 large overlapping sites to test directional correction
- Funded by CNES THEIA budget

▶ Example of L3A time series from Versailles SPOT4 (Take5) site

20/02/2013 MOY_POND_PIX

L3A February

Example of L3A time series from Versailles SPOT4 (Take5) site

L3A March

▶ Example of L3A time series from Versailles SPOT4 (Take5) site

▶ Example of L3A time series from Versailles SPOT4 (Take5) site

Level 3A

- Success in providing monthly (almost) cloud free images
- Sensitivity to cloud mask errors and cloud shadows errors
 - Relatively rare, and even better with Sentinel-2
 - Possibility to add an outlier detection
 - will require long compositing period
- Some inaccuracy in terms of dates, when most images are cloudy
 - Ex Versailles : May L3A based on data obtained End of June
- Future improvements
 - filling of residual gaps via interpolation
 - directional correction to account for Large S2 field of view (overlapping tracks)
- Future distribution of sample L3A products to get feedback

Land Cover : Approaches

Supervised automatic classification

- ► Fast production of a land cover map over Midi Pyrénées sites
- Experiment decided last Wednesday to show results at Take5 day
- > => results produced on Friday !
- SVM, Random Forests, Boosting from Orfeo Tool Box (OTB)
- ▶ 9 dates, 4 bands, 12500×9500 pixels
- The L2A images to be classified weight 7.7 GB

Reference : existing DBs

- Fusion of
 - BD-Topo (built up)
 - BD-Carthage (water)
 - IFN (forest),
 - RPG 2011! (Agriculture)
- Many data but also many errors

Reference : Field campaigns

- Accurate ground truth, but few samples
- Some samples obtained by photo-interpretation
- Small, very localised area covered

Image

Classification

February Image

Reference : Existing databases

Reference : Field Surveys

Land Cover : Conclusions

About the processing chains

- Quick and efficient "Take5 day" operation
 - CESBIO expertise on reference data preparation
 - Efficient (time) and robust (quality) tools based on OTB
 - This work is only starting

About SPOT4 (Take5) data

- Data contains most of the necessary information
 - Although 5 months is a little short (confusions meadows-winter crops)
 - Use of Landsat 8 to obtain summer images

About reference data

- RPG of year N is not available before the end of year N+1
- Reference data quality is crucial
 - 90% with field surveys (1000 concentrated samples)
 - 70% with of-the-shelf DBs (50 000 scattered samples)
- Influence of the spatial spread of the sample
 - We found rapeseed on the mountains when using field surveys

Summary

L1C L2A Validation

- Good validation results for Level 1C and Level 2A
 - Partial validation so far, to be continued
 - Reprocessing needed because of geometric issues
 - Ortho-rectification did not work on 4 Equatorial forest sites
 - Replace LANDSAT 5,7 by better ortho reference images
 - Up to now, same Level 2A parameters for all sites
 - Next version with aerosol models adapted to the sites
- New version expected in November

Higher level products

- Interesting results for Level 3A :
 - Future distribution of sample data, Feedback from users expected

FSRIC

- Land Cover Maps
 - Operational and efficient libraries (OTB)
 - Main difficulties related to in situ data base collection
 - Much more accurate results Next Year...