

Estimation of biophysical variables and cartography of irrigated surfaces with high temporal and spatial resolution images

Perspective of Sentinel-2 mission

Morin David, Battude Marjorie, Demarez Valérie, Valero Silvia, Marais Sicre Claire, Dejoux Jean-François, Mas Eroso Olivia, Huc Mireille, Hagolle Olivier, Cros Jérome, Veloso Amanda

David Morin - SPOT4/Take5 User Workshop – 18 novembre 2014

INTRODUCTION

INTRODUCTION

BIOPHYSICAL VARIABLES : in situ measurements

In situ measurements : GAI/FAPAR/FCOVER + Biomass

ESU repartition in South-West Formosat-2 image

* Elementary Sampling Unit

Processing DHP with Can-Eye software → Estimation of GAI, FAPAR, FCOVER

BIOPHYSICAL VARIABLES : in situ measurements

Taking advantage from SPOT4-Take5 to perform an important ground measurement campaign in 2013

 Sunflower, maize and wheat in South-West (CESBIO) 250 DHP measurements in 2013, 50 for biomass + 100 DHPs, ~50 biomass in archives

 \rightarrow Large and varied reference dataset

 Irrigated meadows in South-East (INRA paca) 70 measurements in 2013

•Avignon •Avignon

South East (SE)

	Maize	Sunflower	Soybean	Wheat	Meadows	total
DHPs estimations	115	83	18	64	72	352
Direct measurements LAI	23	23	12	15		73
Biomasse 2013	6	35		11		52

Measurements 2006 to 2013

Estimation of GAI, FAPAR and FCOVER from satellite images **→BVNET** (Biophysical Variable Neural NETwork)

Developed by INRA (EMMAH, Avignon)

Work on parameters :

Sensibility of differents variables \rightarrow distributions, class, affected crop, ... Objective : move toward a single configuration, operational context

Prior distribution of				
biophysical variables				
Sensor and angles				

	Variable	Minimum	Maximum	Mode	Std	Nb.class	Law
Cover structure	LAI	0	15	2	2	6	Normale
	ALA (°)	5	80	40	20	8	Normale
	Hotspot	0.1	0.5	0.2	0.5	1	Normale
Leaf optical properties	Ν	1.2	2.2	1.5	0.3	3	Normale
	Cab (µg.m ⁻²)	20	90	45	30	4	Normale
	Cdm (g.m-2)	0.003	0.011	0.005	0.005	4	Normale
	Cw	0.6	0.85	0.75	0.08	4	Uniforme
	Cbp	0	2	0	0.3	3	Normale
Soil properties	Bs	0.5	3.5	1.2	2	4	Normale

Input variables distribution for learning database creation

TOC reflectance Satellite images (N2A)

> 60 images processed for the validation 6 different sensors 2006, 2008, and 2013

Sensor	Resolution	Bands used
Formosat2	8m	Green, red, NIR
SPOT2	20m	Green, red, NIR
CDOT4		Green, red, NIR,
SPOT4	20m	MIR
CDOTE		Green, red, NIR,
SPOT5	10m	MIR
Landsat8		Green, red, NIR,
	30m	MIR1
Landsat7	30m	Green, red, NIR

Validation results

Overall good results for later use in models

- Single configuration for all crops and years in South-West
- ALA* parameter changed for irrigated meadows *(Average Leaf Angle)

	- I		RRMSE (%)	
Relative error :	Crop	GAI	FAPAR	FCOVER
GAI : 28%	Wheat	26.0	13.2	27.9
	Maize	23.3	13.3	18.2
FAPAR : 14%	Soybean	26.4	11.3	9.8
FCOVER : 22%	Sunflower	36.9	19.1	21.5
	Irrigated meadows	27.7	10.7	23.7

Validation results

Overall good results for later use in models

- Single configuration for all crops and years in South-West
- ALA* parameter changed for irrigated meadows *(Average Leaf Angle)

Perspectives :

- Include BVNET in OTB (processing time gains, OpenSource)
- Further evaluation of BVNET model for correcting sensor effect
- Contribution of MIR for BV estimations
- Crops specific parameters distribution if land cover maps
- Validation in other sites = Sentinel 2 for agriculture

BIOPHYSICAL VARIABLES

What uses ?

IRRIGATED CROPS – phenological indicators

Cartography of irrigated crops

Work on phenological indicators for the discrimination of irrigated cropsdaily temperature accumulationdouble logistic interpolation

Ex for NDVI accumulation

Double logistic interpolation Irrigated in blue, not irrigated in green

Preliminary results :

Error < 20% by mid July

- Good perspectives for the discrimination of irrigated crops
- validation work to continue in 2015
- automatisation of processing chain

Exemple of classiffication irrigated/not-irrg. crops

BIOMASS ESTIMATION - SAFY

SAFY* : agro-meteorological model

- Limited number of simulated processes and parameters: 13
- Suitable for use of remote sensing data
- daily step

- GAI (Green Area Index)
- DAM (Dry Aboveground Mass = biomass)
- Yield

* Simple Algorithm for Yield Estimates ; Duchemin et al. (2008)

BIOMASS ESTIMATION - validation

Preliminary results for biomass estimation Validation of SAFY model :

- 32% RRMSE for sunflower
- 19% for maize
- 20% for wheat

- Work will continue on calibration and validation
- Efforts for an operational use with limited in-situ data
- Incorporation of water in the model = SAFY<u>E</u>
 - \rightarrow water needs and supplies estimation

First results for calibration of SAFYE on maize :

Conclusions

- Very good dataset for reference data biophysical variables
- Correct results with BVNET for biophysical variables estimation with remote sensing data
- -> good temporal profile for use as input in models
- Good estimation of biomass, and perspectives for improvement and automatisation with current work
- Promissing results for water needs and supplies estimation with SAFYE

Perspectives

- **BVNET** in OTB
- continue work to evaluate the interest of BVNet
- ightarrow correction sensor effect on multi-sensor series
- \rightarrow contribution of MIR band
- \rightarrow specific configuration for each crop

SAFYE :

- continue work on parameters optimization
- Calibration and validation for water needs and supplies
- Yield : bad reference data, need new dataset

• Need to continue work on cartography of *irrigated areas* with large dataset, especialy SPOT4-Take5 series

Thank you for your attention

We are grateful to the following partners for their financial support : CNES, FEDER, OSEO, Agence de l'eau, CACG, Région Midi-Pyrénées, ESA Sen2Agri