

Assessing Forest Degradation in the tropics using Time Series of Fine Spatial Resolution Imagery

Astrid Verhegghen, Jukka Miettinen, Lorena Hojas Gascon, Baudouin Desclée, Hugh Eva, René Beuchle, Hans-Jurgen Stibig and Frédéric Achard

European Commission Joint Research Centre

TAKE 5 Days 18-19 November 2014 CNES (Toulouse)

ReCaREDD project

REDD + : reducing emissions from **deforestation**, **forest degradation**, conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries

ReCaREDD project - Strengthening national and regional capacities for reporting on the mitigation actions of the forest sector in tropical countries

Lead institution & project name	Key products of project for MRV of REDD+	Spatial Coverage of project	Capacity building	Policy support	Specific Comments
FAO FRA-RSS JRC TREES-3	Deforestation estimates 1990-2000- 2005 by regions	Tropics (JRC) / Global (FAO)	Regional workshops	REDD phase 1	Spatial information. Deforestation only
JRC/CIRAD/ UCL OFAC	Regional forest map Deforestation estimates 1990-2005 at national level	Central Africa	Project embedded in COMIFAC	Yes	Spatial information. Biodiversity safeguard considered
FAO UN-REDD	Deforestation estimates at national level	16 countries (with Cent. Africa)	Support to National Progr.	Yes	Based on existing methods
WB FCPF (Grants)	No maps	12 countries	Support to National Progr.	Yes	Based on existing methods
EC/AUC AMESD & MESA	Real-time Environmental monitoring	Africa (Regional Economic Comm.)	In regional centres	Yes	Complementary to forest-cover (fires,)
FAO FRA Country Survey	Global report from national statistics	Global	-	-	No spatial information
WB REDD Regional Capacity-building	Allometric equations	Central Africa	Workshops and training sessions	Yes	
JRC ReCaREDD	Regional Forest maps Degradation estimates at regional and national levels	Focus on selected regions and countries	In regional and national institutions	REDD phases 1 & 2	Spatial information for all activities ₃

ReCaREDD projet

- Funded by the European Commission (2014-2017)
- Joint Research Center (Ispra and Brussel) in collaboration with target countries (Africa, South America, South East Asia)
- Focusing on Forest Degradation

Joint methodological development for the monitoring of forest degradation

Sentinel 2

Strengthening of regional forest observatories and national institutions Provision of information of forest-cover evolution to policy makers

Forest Degradation

• Complex definition

- FAO (2009) : Reduction of the capacity of a forest to provide goods and services
- UN-REDD: Reduction of carbon stocks
- Important to define the spatial and temporal scales

2 month before exploitation

1 month after exploitation

2 years after exploitation

Challenges for forest degradation monitoring by remote sensing

- 1) Complex forest cover change
 - Reference state: Regional/National forest types maps
 - Small areas of change
 - Various change trajectories
- Exploit higher resolution (10 m) to detect and quantify areas of degraded forests
- 3) Multi-temporal: Exploit new sensors with higher frequency acquisition \rightarrow From single image to time series analysis
- 4) Automation

Landsat-5 TM image (30m)

dEye image (5m)

World-View image (0.5 m)

European Commission

Jan 2005

20 March 2014 **Detected gap**

Joint Research Centre

8

Source B. Desclée

Spot 4 Take 5 – sites explored for degradation monitoring

Cloud cover in the tropics

Spot4 – Take5 acquisition over Honduras (ca. 15° N / 85° W)

In theory the S4T5 acquisition time (February to June) is a period with less rain in Honduras. However only one good SPOT image available for the area of interest (on 16.02.2013)

JRC-Borneo site

- Perhumid tropical climate.
- 11 scenes between 1st
 Feb and 6th June
 - Pristine and selectively logged forests with up to 1600 m elevation.

JRC-Cameroon site

17 acquisitions (out of 30) 10 images p CCOd

9-May

23-May 30-May 0-Jun 13-Jun 20-Jun

16-May

21-Mar 28-Mar 4-Apr 11-Apr 18-Apr 25-Apr 2-May

7-Mar 14-Mar Monthly climate averages for Korup (Cameroon)

Cloud cover

31-Jan

7-Feb 14-Feb 21-Feb 28-Feb

100% 90%

> 80% 70% 60% 50% 40% 30% 20%

10% 0%

Compositing in humid forest

Sumatra (~ 102.5° E and 0.5° N)

- Perhumid insular SEA, coastal peatlands
- Selectively logged peat swamp forest and some Acacia mangium and oil palm plantations

JRC-Sumatra site

- Perhumid tropical climate.
- 14 scenes between 1st
 Mar and 19th Jun.
- Selectively logged peat swamp forest and some plantations.

Source J. Miettinen

Development of surface reflectance on forest in the Sumatra site

Based on a sample site of around 90 000 pixels covered by seven images

Source J. Miettinen

JRC-Sumatra site

Sumatra - Simulation of Level 3A product (average composite)

- We used our own cloud and shadow masking and utilized all images
- The quality was generally good, although some haze effects remain
- Average number of valid observations per pixel was 4.3 (std 1.5)
- Only 0.7% did not have any valid observations during this 4.5 months (and part of this is due to erroneously masked out drainage canals in peat!)

Source J. Miettinen

Time series in dry forest

Thailand (~ 98° E and 19° N)

- Dry continental SEA, dry season from November to April
- Evergreen and deciduous forests, shrub and agriculture
- Latter half of dry and the beginning of rainy season covered

JRC-Thailand site

- Dry tropical climate: end of dry season and beginning of rainy season covered.
- 21 scenes between 2nd • Feb and 17th Jun.
 - Deciduous and evergreen forests and agricultural areas.

Development of NDVI in different land cover features in the Thailand site

JRC-Tanzania site

Mtera, Tanzania 7S 36E

23 acquisitions; February 6th - June 16th 2013 End of wet season (Feb.), to short wet season (April-May) to dry season (June)

JRC-Tanzania site

Commission

Source Hugh Eva, Lorena Hojas Gascon

March April May Monthly composites based on median after cloud masking

June

Based on median of all images

Based dry season (June) image

Joint Research Centre

JRC-Tanzania site

Closed dry forest World View 2

European Commission

Open dry forest World View 2

Joint Research Centre 0.9 0.8 0.7 0.6

0.5 ADN 0.4

> 0.3 0.2

0.1

0

20

SPOT NDVI - Closed Forest
SPOT NDVI -Open Forest

60

80

Julian Day 2013

100

120

140

40

Source Hugh Eva, Lorena Hojas Gascon

160

180

12 km

Selective logging

Logging concessions – selective logging

Exploitation in 2013

Concomitant with Spot4Take5 acquisition

30500 ha

Time series of 20 images acquired between 1/02/2013 and 16/06/2013

CNES/CESBIO V2.0 version (march 2014)

- Improvement in the orthorectification
- Cloud mask, still haze and small clouds

Landsat 8 and Rapideye images

13 03 2013

08 03 2013

01 06 2013

02 05 2013

Joint Research Centre

17 05 2013

Haze and small clouds affect average compositing Orthorectification seems ok

20 images – average band 2 (Red) 6 "best" images – average band 2 (Red)

- Analysis of the 6 "best" images
- INPE Spectral unmixing Enhance logging tracks and logging gaps
- Segmentation on Soil fraction + NDVI → detection of the logging tracks and gaps for each image

Difference in area of changes detected

First date of detection 2013 02 16 2013 02 21 2013 03 13 2013 04 12 2013 05 02 2013 05 27	16 02 2013 21 02 2013 13 03 2013 12 04 2013 02 05 2013 27 05 2013	488.6 ha 96 ha 160.6 ha 140.5 ha 214.2 ha 307.88 ha 1407.8 ha	Cumulative impact observed
	16 02 2013 21 02 2013 13 03 2013 12 04 2013 02 05 2013 27 05 2013	488.6 ha 447.8ha 560.6ha 463.6 ha 681.5 ha 862.3 ha	Single image analysis

Changes happen fast

Conclusions from the sites in the tropics

In the tropics, observation frequency varies strongly between the spot4tk5 sites. Some sites are unusable due to cloud coverage

Still some issues with cloud mask – haze removal

Degradation monitoring – Requirement of new methods and data.

- Reference maps at different epochs
- High resolution time series analysis

Potential of S-2 showed by the SPOT4Take5 experiment:

- Low temporal frequency Potential for cloud-free composites
- High temporal frequency Time series analysis in dry forests (different types of LC) and humid forests (fast changes)

