Inferring blue tit reproductive phenology using SPOT4 imagery

Marta Szulkin IEF Marie Curie Fellow Centre d'Ecologie Fonctionnelle & Evolutive (CEFE) CNRS Montpellier UMR 5175 France

Evolutionary Ecology: Evolution takes place in an ecological context

How do animals adapt to their environment?

Can birds adapt to a heterogeneous environment?

Animal phenology:

- Variable in time & space
- Timed to its ecological environment

Cyanistes careuleus caeruleus & C. c. ogliastrae

"D" Deciduous: Downy Oak (Quercus pubescens)

"E" Evergreen: Holm Oak (Quercus ilex)

Parallel populations monitored in contrasted habitats

Study sites:

Bird phenotype:

1 month difference in breeding time depending on oakwood morphotype.

Blue tits match their reproduction to local food peaks

Blue tit field work

Vegetation Indexes for Remotely Sensed phenology

NDVI: Normalized Difference Vegetation Index

 Measures green plant spectral reflectance using measurements acquired in red and near-infrared (NIR) regions

Can we use winter NDVI to differentiate deciduous and evergreen oaks?
 "La Rouviere" study site: 80% deciduous, 20% evergreen

Research Aims

- Can satellite imagery generate biologically relevant information regarding habitat heterogeneity and blue tit phenology?
 - Validate satellite imagery with ground data
 - Investigate the predictive power of remotely sensed vegetation indexes to explain variation in animal reproductive success
 - Explore start of season (SOS) statistics and test their predictive power in explaining:
 - caterpillar peaks
 - blue tit timing of breeding

Collaborators

Przemek Zelazowski OUCE University of Oxford CENT University of Warsaw

Pascal Marrot CEFE CNRS Montpellier

Anne Charmantier CEFE CNRS Montpellier

Remote sensing in avian ecology research

Phenology

- Leaf Development Index
- Caterpillar biomass / frass

Data not always available

- Remote sensing of phenology: satellite imagery
 - MODIS 2000
 - LANDSAT 1970s
 - AVHRR 1970s
 - SPOT 4 (Take 5) 2013

Vegetation indexes
based on spectral reflectance

Remote sensing in avian ecology research

Satellite sensors to monitor phenology

Resolution: 250 m. Frequency: Once a day 30 m. Every 16 days

20 m. every 5 days

• Resolution vs frequency of image acquisition

Available satellite data

MODIS cloud fraction, Feb-June, 2000-2011

Remote sensing in avian ecology research

Cloudiness & bird long-term studies

monthly means & SDs of MODIS-derived cloud fraction (2000-2011):

SPOT image of the La Rouviere site (1 pixel=20m)

Winter

Summer

250 0 250 500 750 1000 m

Deciduous oak Evergreen Oak

SPOT imagery + 194 nestboxes + 194 oak estimates in 50m radius

SPOT NDVI & oak ground data

20

nr of deciduous oaks

R²=52%

proportion of evergreen oaks (in %)

- SPOT imagery explains up to 55% of variance in oak number measured in the field
- Spot imagery in good agreement with ground data

SPOT NDVI & bird reproductive data

SPOT NDVI & bird reproductive data

- NDVI explains meaningful variation in bird reproduction
- It is a valuable proxy when ground vegetation data is not available

SPOT NDVI filter size

• How many pixels to sample around the nestbox to best capture biologically relevant ecological and reproductive data?

Filter size:

1*1 pixel3*3pixels(10m radius)(30m radius)

5*5 pixels (50m radius)

7*7 pixels (70m radius)

Pixel colours reflect contrasted NDVI values

SPOT NDVI as a proxy for oak ground data in 50m radius from nestbox

radius for NDVI values

 NDVI filters between 30 and 50 meter radius best explain variance in the number of oaks as measured on the ground in a 50m radius

SPOT NDVI to infer bird foraging distance

Can we use NDVI filters of increasing size to infer realised blue tit foraging distance when feeding offspring in the nest?

NDVI radius important at the fledging stage peaks at 50m

SPOT NDVI time series

- SPOT imagery accurately predicts NDVI signatures of deciduous and evergreen oaks along the season
- MODIS analyses are scheduled to infer pixel-based start of season statistics across several phenological cycles

Summary

- SPOT imagery explains up to 55% of variance in [deciduous] oak number as measured in the field and is thus in good agreement with ground data
- It is a valuable proxy when ground vegetation data is not available

THANK YOU!!

