living planet symposium 2016

Yield mapping for different crops in Sudano-Sahelian small holder farming systems

X. Blaes¹, M.-J. Lambert¹, G. Chomé¹, P.-S. Traore², R. de By³, P. Defourny¹ ¹ Earth and Life Institute, UCL, Belgium - ² ICRISAT, Mali - ³ ITC, The Netherlands

9-13 May | Congress Centre | Prague | Czech Republic

STARS

Spurring Transformations in Agriculture through Remote Sensing

- BMGF funded project, ITC-leads
- Mali/Nigeria + Tanzania + Bangladesh

Mali site

Small holder croppingField size: 1.45 haLow fertilizationLow yield5 main crop types

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Many sources of heterogeneity

Trees into the fields

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Intra field variability

Objectives

Yield estimation in heterogeneous landscape

- Decametric SPOT-5 Take5 compatible with fragmented landscape?
- Metric WorldView time-series?
 - 1. Trees inside the fields?
 - 2. Mixed pixels at the field border?

Unprecedented in-situ datasets

- 5 crop types 50 fields 2 growing seasons (2014-2015)
- Biweekly: LAI, f-cover, Plant height, Chlorophyll, Devpt. stage, ...
- Fertility trial & biomass measurement (destructive end of season)

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Fertilization to represent landscape heterogeneicsa

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

European Space Agency

Crop type map

4 crop types for 1023 fields

- Field deliniated on VHR image
- Crop type identification by field visits

RS time series for 2015 growing season

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Linear regressions to estimate biomass

2. Biomass estimation for all the fields in the crop type map (n=1023)

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

1. Model definition with experimental plots

2015-09-03 (R²=0.63)

Temporal evolution of the correlation coefficient (R²)

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Selection best veg. index for each crop

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Selection best veg. index for each crop

Normalized Difference Vegetation Index	$NDVI = \frac{\rho_{NIR} - \rho_{RED}}{\rho_{NIR} + \rho_{RED}}$
Green NDVI	$gNDVI = \frac{\rho_{NIR} - \rho_{GREEN}}{\rho_{NIR} + \rho_{GREEN}}$
Red-edge NDVI	$NDVIre = \frac{\rho_{NIR} - \rho_{RED - EDGE}}{\rho_{NIR} + \rho_{RED - EDGE}}$
Modified Chlorophyll Absorption Ratio Index	$MCARI = \left[(\rho_{rededge} - \rho_{red}) - 0.2(\rho_{rededge} - \rho_{Green}) \right] \frac{\rho_{rededge}}{\rho_{red}}$
Modified Chlorophyll Absorption Ratio Index	$MCARI2 = \frac{1.5[2.5*(\rho_{NIR} - \rho_{red}) - 1.3(\rho_{NIR} - \rho_{Green})]}{\sqrt{(2\rho_{NIR} + 1)^2 - (6\rho_{NIR} - 5\sqrt{\rho_{red}}) - 0.5}}$
Triangular Vegetation Index	$TVI = 0.5 \left[120(\rho_{750} - \rho_{Green}) - 200(\rho_{red} - \rho_{Green}) \right]$
Modified Triangular Vegetation Index	$MTVI2 = \frac{1.5[1.2*(\rho_{NIR} - \rho_{Green}) - 2.5(\rho_{red} - \rho_{Green})]}{\sqrt{(2\rho_{NIR} + 1)^2 - (6\rho_{NIR} - 5\sqrt{\rho_{red}}) - 0.5}}$
Green Chlorophyll Index	$Cl_{Green} = \frac{\rho_{NIR}}{\rho_{Green}} - 1$
Red-edge Chlorophyll Index	$Cl_{Red-edge} = \frac{\rho_{Red-edge}}{\rho_{Green}} - 1$
MERIS Terrestrial Chlorophyll Index	$MTCI = \frac{\rho_{NIR} - \rho_{Red-edge}}{\rho_{Red-edge} - \rho_{Red}}$

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Selection best veg. index for each crop

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Different agro conditions through the catena @esa

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Different agro conditions through the catena Cesa

Different growing conditions

Sorghum (valley)

Sorghum (slope)

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Landscape stratification

Altitude & brighness

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Best model selection for each strata

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Model inversion for biomass estimation

Estimation at pixel level

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

European Space Agency

DigitalGlobe

Estimation for the 1023 fields

Normalized mean abs. err. (MAE) wrt in-situ measured biomass

Crop type	MAE (%)
Sorghum	21.42
Cotton	25.4
Maize	21.06
Millet	11.03

IVING Planet Symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Relatively good R² with SPOT (except Maize)

DigitalGlobe

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Impact of resolutions on biomass estimation

Crop type	MAE* 2-m res. (%)	MAE* 10-m res. (%)
Sorghum	21.42	27.82
Cotton	25.4	29.16
Maize	21.06	/
Millet	11.03	20.84

Larger error at 10-m resolution

*MAE = Normalized mean abs. err. (wrt in-situ measured biomass)

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Impact of trees on biomass estimation

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Impact of trees on biomass estimation

Biomass difference wrt RBM

Significant impact for Maize and Millet

Crop type	p-value	overestimation
Sorghum	0.106	
Cotton	0.311	
Maize	0.002	29 %
Millet	3.6e-11	20 %

Impact of field border on biomass estimation @esa

Border mixels introduce noise in biomass estimation

Significant impact for Millet

living planet symposium 2016 9–13 May 2016 | Congress Centre | Prague | Czech Republic

Conclusions

- Unprecedented in-situ data & RS time series for 2 crop seasons
- Linear regression models allow good biomass estimation (11-25% error at 2-m res., 20-29% error at 10-m res.)
- Acquistion date is important linked to crop calendar (crop & year specific)
- Stratification improves regression models (in heterogeneous landscape)
- **Specific vegetation index** per crop type & strata
- Biomass overestimated by trees in the field for millet-maize (20-29% resp.)
- Pixels in the field's border do impact biomass estimate only for millet