

# Sentinel-2 for Agriculture Project

### Take 5 Data Set to Anticipate Sentinel-2 Exploitation for Agriculture Monitoring Applications

Bellemans N., Arias M., Bontemps S., Dedieu G., Guzzonato E., Hagolle O., Inglada J., Matton N., Morin D., Rabaute T., Savinaud M., Sepulcre G., Valero S., Defourny P., Koetz B.

9–13 May | Congress Centre | Prague | Czech Republic

European Space Agency

#### Sentinel-2 for Agriculture Launched by ESA in Feb. 2014



Objective:

- Preparation for national to regional agricultural monitoring based on Sentinel-2
- Consolidate best practices for EO agricultural monitoring
- Strengthening national capacity for agricultural monitoring
- 3-phases project over 3 years



#### Toolbox for 4 S2-based products in line with the GEOGLAM core products



### A unique dataset made of Sentinel-2 like EO time series .



12 sites globally distributed to develop algorithms where EO dataset mainly made of SPOT4- Take 5

(Bontemps et al., RS2015)



#### A unique dataset made of Sentinel-2 like EO time series.



12 sites globally distributed to develop algorithms where EO dataset mainly made of SPOT4- Take 5

(Bontemps et al., RS2015)

8 sites to repeat the experience and test the robustness of the selected algorithms with dataset mainly made of **SPOT5-Take 5** 



### ... and globally spread in-situ data set

| Site           | 2013                                                    | 2015                                                |  |  |
|----------------|---------------------------------------------------------|-----------------------------------------------------|--|--|
| Argentina      | Crop (108) – No crop (39)                               | Х                                                   |  |  |
| Belgium        | Crop (31244)-No crop (78156)<br>GAI, PAI, FAPAR, FCOVER | Crop (41) – No crop (68594)<br>GAI                  |  |  |
| Burkina Faso   | Crop (496) – No crop (101)                              | Crop (611) – No crop (141)                          |  |  |
| China          | Crop (54) - No crop (22)                                | Crop (142) – No crop (20)                           |  |  |
| France         | Crop (1500) - No crop (7659)                            | Crop (985) – No crop (809)                          |  |  |
|                | GAI, PAI, FAPAR, FCOVER                                 | GAI, PAI, FAPAR, FCOVER                             |  |  |
| Mali           | Х                                                       | Crop (497) – No crop (80)                           |  |  |
| Morocco        | Crop (636) - No crop (500)<br>LAI                       | Х                                                   |  |  |
| Pakistan       | Crop (228) – No crop (54)                               | Х                                                   |  |  |
| Russia         | Crop (205) - No crop (56)                               | Crop (85) – No crop (44)<br>GAI, PAI, FAPAR, FCOVER |  |  |
| South Africa   | Crop (120) - No crop (44)                               | Crop (182) – No crop (599)                          |  |  |
| Ukraine        | Crop (221) - No crop (56)<br>GAI, PAI, FAPAR, FCOVER    | Crop (70) – No crop (69)                            |  |  |
| Maricopa (USA) | Crop (4907) – No crop (11351)                           | Х                                                   |  |  |





Successful development thanks to JECAM collaborative network

# Wide range of agricultural systems



Morocco

Russia

South Africa

Maricopa

Ukraine

ESBIC





→ AGRICULTURE

Madagascar

### Benchmarking for a transparent and objective algorithms selection using SPOT4Take5 data





# Repeating and testing the robustness with SPOT5-Take5 dataset



















ESBIO





# Repeating and testing the robustness with SPOT5-Take5 dataset



## Monthly cloud-free composite



#### **Benchmarking conclusions**

- Weighted average approach
- Compositing period can vary between 30 to 50 days window
- Implements a directional correction for seamless composites
- Recurrent implementation : L3A product updated with each new L2A product

To limit the data volume to keep on-line in Sen2Agri system





# Glimpse of 2015 results on Mali site

Remaining cloud or cloud shadow

#### Site : Ourikela-Mali

SPOT5(Take5)

Apr

From 2015-04-10 to 2015-09-12 5 monthly composites Compositing period: 50 days

- Artefacts and higher proportion of remaining gaps on the edges due to SPOT5 footprint instability

- Even with a temporal period of 50 days for compositing, there are still gaps in rainfall season. (~25 % of soil is not visible from 07-20 to 09-10)



30/04/2015

ND PIX

# Glimpse of 2015 results on Mali site

#### Site : Ourikela-Mali

From 2015-04-10 to 2015-09-12 5 monthly composites Compositing period: 50 days

- Artefacts and higher proportion of remaining gaps on the edges due to SPOT5 footprint instability

 Even with a temporal period of 50 days for compositing, there are still gaps in rainfall season.
 (~25 % of soil is not visible from 07-20 to 09-10)





# Glimpse of 2015 results on Mali site

#### Site : Ourikela-Mali

From 2015-04-10 to 2015-09-12 5 monthly composites Compositing period: 50 days

- Artefacts and higher proportion of remaining gaps on the edges due to SPOT5 footprint instability

Even with a temporal period of 50 days for compositing, there are still gaps in rainfall season.
(~25 % of soil is not visible from 07-20 to 09-10)



#### Composite period w/r to the data availability



# Dynamic cropland mask



→ AGRICULTURE

(Valero S. et al., RS2016)

#### **Benchmarking conclusions**

- 2 chains implemented to deal with presence/absence of in-situ data
- RF supervised algorithm
- Trimming to clean an reference map
- A posteriori smoothing based on a per-object approach





# Exemples on few SPOT4 sites



### 2015 Crop mask – Using in situ data Auch-France

#### SPOT5 30/05/2015 - False colors composite



Crop mask legend No crop

Crop

Validation data

Crop









### 2015 Crop mask – Using in situ data Auch-France

#### Crop mask pixel



Université catholique de Lovasin







### 2015 Crop mask – Using in situ data Auch-France

Crop mask pixel

Majority vote with segmentation

|       | 9 month       |             |       |                 |
|-------|---------------|-------------|-------|-----------------|
|       | Fscore_noCrop | Fscore_Crop | Kappa | OverallAccuracy |
| Mean  | 0.873         | 0.939       | 0.812 | 0.918           |
| CI-95 | 0.007         | 0.003       | 0.007 | 0.003           |

#### 9 month with post-processing

|       | Fscore_noCrop | Fscore_Crop | Kappa | OverallAccuracy |
|-------|---------------|-------------|-------|-----------------|
| Mean  | 0.885         | 0.945       | 0.829 | 0.925           |
| CI-95 | 0.005         | 0.003       | 0.006 | 0.003           |

### 2015 Crop mask – Using in situ data Mali - Ourekila

SPOT5 30/07/2015 - False colors composite



Validation data

No crop
Crop









### 2015 Crop mask – Using in situ data Mali - Ourekila

Crop mask pixel

Majority vote with segmentation

|       | 6 month       |             |       |                 |
|-------|---------------|-------------|-------|-----------------|
|       | Fscore_noCrop | Fscore_Crop | Карра | OverallAccuracy |
| Mean  | 0.834         | 0.922       | 0.756 | 0.894           |
| CI-95 | 0.011         | 0.009       | 0.018 | 0.010           |

#### 6 month with post-processing

|       | Fscore_noCrop | Fscore_Crop | Карра | OverallAccuracy |
|-------|---------------|-------------|-------|-----------------|
| Mean  | 0.869         | 0.940       | 0.809 | 0.918           |
| CI-95 | 0.010         | 0.007       | 0.016 | 0.009           |



### Efficient annual cropland mapping along the season



Approach using in situ better than without in situ one.

Without in situ method reachs the OA targets => also interesting as many situations where field campaigns are not ensured (e.g. 1<sup>st</sup> year of activity, food insecure countries, political instabilities, etc.)

#### Crop type map



(Inglada et al., RS2015)

Université catholique de Louvein

#### **Benchmarking conclusions**

- Based on the crop mask previously generated
- Random forest classifier
- Classifier applied on features :
  - Surface reflectance
  - NDVI
  - NDWI
  - Brightness





### 2015 Crop type over Toulouse region (France)









UCL





sentinel-2

### Crop type (Auch - France)



\* Overall Accuracy : 0,8512
\* 4 main crops F-Score > 0,80
\* Barley : confusion with wheat











#### Argentina





France

Wheat Maize Barley Rapeseed Sunflower Other annual crops





#### Belgium



#### Russia

Winter wheat Spring barley Rapeseed Sunflower Other annual crops



## **3 LAI products**

#### Mono-date LAI estimation



• Multi-date and fitted LAI reprocessing



#### **Benchmarking conclusions**

- Non-linear regression model
- Reflectance are simuated using the ProSail model
- 2 reprocessing options :
  - Weighted average using the n last LAI value
  - Fitting a phenological model on the full time series









2016 Growing season



→ AGRICULTURE







20-04-2015

#### 10-04-2015

LAI value





La force de l'innovation



2016 Growing season









Nov



Ground data

LAI SPOT5









### 2015 monodate LAI profiles over France



— Ground data

LAI SPOT5









### Conclusions

- SPOT4 (Take5) enabled to test methods in conditions similar to Sentinel-2
- Repeated experiment with SPOT5 (Take5) allows obtaining the same encouraging results
- With both experiments the project is now able to provide a strong scientific contribution to the JECAM network and GEOGLAM initiatives
- Contribute to fill the gap between operational systems and state-of-theart
- Ready for demonstration phase allowing to test Sentinel-2 data in real conditions
- Many thanks to CNES and ESA for making this unique dataset available
- Successful development thanks to JECAM collaborative network









### Thank you for your attention



#### Early results from Sen2-Agri system using S-2 over Czech Republic











