Can we use Spot 5 Take 5 to monitor dissolved organic carbon in the Arctic river Yenisei?

Living Planet Symposium 2016 – ESA
Prague (9-13 May)

P.-A. Herrault1,2, L. Gandois2, S. Gascoin1, N. Tananaev3, T. Le Dantec2, R. Teisserenc2

1CESBIO Lab.
UMR 5126 UPS/CNRS/CNES/IRD

2ECOLAB Lab.
UMR 5245 UPS / CNRS
UPS Toulouse III, INPT

3Igarka Geocryology Lab.
Context

✓ + 5°C in high-latitudes
✓ 1/3 of the organic carbon in permafrost
✓ organic carbon drained by great Arctic rivers → dissolved organic carbon (DOC)
✓ Yenisei river is the greatest contributor to Arctic Ocean
Context

✓ + 5°C in high-latitudes
✓ 1/3 of the organic carbon in permafrost

✓ organic carbon drained by great Arctic rivers → dissolved organic carbon (DOC)
✓ Yenisei river is the greatest contributor to Arctic Ocean
Context

Yenisei, 22/05/2015 (crédit : TOMCAR-Permafrost)
Context

Yenisei, 22/05/2015 (crédit : TOMCAR-Permafrost)
Context

- 80% of DOC fluxes in the peakflow period
- Logistical problems to sample DOC
 - Remaining ice-breaks
 - Very short-period (a few weeks in May and June)
- Lack of knowledge on DOC spatial patterns at largest scales and on DOC temporal dynamics
Context – Remote sensing could be a precious tool

- 80% of DOC fluxes in the peakflow period
- Logistical problems to sample DOC
 - Remaining ice-breaks
 - Very short-period (a few weeks in May and June)
- Lack of knowledge on DOC spatial patterns at largest scales and on DOC temporal dynamics
Background

- Satellite acquisitions
- Optical satellite images
- 1st statistical relationship
- 2nd statistical relationship
- DOC retrieval
- In situ DOC measurements
- CDOM measurements
- Visible absorption
- Infrarouge absorption

Yenisei, 22/05/2015 (crédit : TOMCAR-Permafrost)
Background

✓ Numerous CDOM retrieval algorithm have been developed in oceans, lakes and more recently on Arctic rivers (for a review: Zhu et al, 2014; Brezonik et al, 2015)

✓ 2 major approaches to explore relationships between CDOM and optical signal

Empirical models

- Easy to calibrate
- Current problems of linear regression (outliers, overfitting)

Process-based model

- Best description of the processes
- Input data rarely available
Background

✓ Numerous CDOM retrieval algorithm have been developed in oceans, lakes and more recently on Arctic rivers (for a review: Zhu et al, 2014; Brezonik et al, 2015)

✓ 2 major approaches to explore relationships between CDOM and optical signal

Empirical models vs. Process-based model

✓ Geographic-area dependent
✓ Spectral band combinations are effective (band ratio or band multiplication)
✓ namely shorter and longer wavelengths combination
Issues

✓ Low- spatial resolution sensors are effective to monitor CDOM in oceans or lakes but high-spatial sensors are more suited for Arctic rivers:

→ to evaluate the spatial heterogeneity of DOC

→ to characterize the river during the ice-break period or between clouds

→ for their atmospheric corrections

✓ Available high- spatial resolution sensors (Landsat, Spot) have a too low repeat-cycle orbit:

→ to evaluate DOC dynamics in the freshest period

→ to have an acceptable number of spatial acquisitions
Goals

✓ Developing a CDOM algorithm retrieval at high spatial and temporal resolution to:

→ to evaluate the **DOC dynamics during the open water season** with a special focus on the **freshest period**

→ to evaluate the **spatial heterogeneity of DOC** in the river channel

✓ Specific objectives are:

→ finding an optimal **spectral bands configuration**

→ evaluating the **predictive performance** of the developed model

→ discussing the **potentiality of high spatio-temporal optical remote sensing**

→ **Preparation for Sentinel 2 data**
Study site – Yenisei river (Igarka – Take 5 Site)

- Discontinuous permafrost
- High-flow period lasts from mid-May to mid-July
- Peak-flow period in late May-early June
Methodological flowchart

Optical satellite acquisitions

Draw an extraction mask

Extract water surface reflectances

Spectral variables

Multiple Linear regression

Linear regression

BD in-situ « DOC »

BD in-situ « CDOM »

Correlation ?

[KO]

[OK]

DOC model retrieval

CDOM model retrieval

CDOM prediction

DOC prediction
Methodological flowchart

Optical satellite acquisitions

- Draw an extraction mask
- Extract water surface reflectances

Step 1

- BD in-situ «DOC»
- BD in-situ «CDOM»

Linear regression

- [KO]
- [OK]

Spectral variables

- Multiple Linear regression
- CDOM proxy

DOC model retrieval

- DOC prediction
- CDOM prediction

CDOM model retrieval
Methodological flowchart

1. **Optical satellite acquisitions**
 - Draw an extraction mask
 - Extract water surface reflectances
 - Spectral variables

2. **Spectral variables**
 - Linear regression
 - Multiple Linear regression
 - Correlation?
 - [OK]
 - CDOM proxy
 - CDOM model retrieval
 - CDOM prediction
 - DOC prediction

3. **BD in-situ « DOC »**
 - BD in-situ « CDOM »
 - DOC model retrieval
 - DOC prediction

Living Planet Symposium 2016 – Prague (9-13 May)
Methodological flowchart

Optical satellite acquisitions

Draw an extraction mask

Extract water surface reflectances

Spectral variables

Multiple Linear regression

Linear regression

Correlation?

BD in-situ « DOC »

BD in-situ « CDOM »

[KO]

[OK]

Step 4

DOC model retrieval

CDOM model retrieval

CDOM prediction

DOC prediction
Linear regression

CDOM proxy

Introduction

Data and Methods

Results

Conclusion

Living Planet Symposium 2016 – Prague (9-13 May)

Methodological flowchart

- Optical satellite acquisitions
- **Step 1**
 - BD in-situ «DOC»
 - BD in-situ «CDOM»
 - Linear regression
 - Correlation?
 - [KO]
 - [OK]
- **Multiple Linear regression**
- CDOM proxy
- DOC model retrieval
- CDOM model retrieval
- CDOM prediction
- DOC prediction
Synchronisation of in-situ measurements and Spot 5 Take 5 acquisitions

- 25 ST5 scenes from 09/04/2015 to 06/09/2015
- 41 field-samples in 2014 and 28 in 2015 (DOC, CDOM, TSS)
Synchronisation of in-situ measurements and Spot 5 Take 5 acquisitions

20/05/2015

5 days

25 ST5 scenes from 09/04/2015 to 06/09/2015

15/09/2015

+ LANDSAT 8 acquisitions

✓ 25 ST5 scenes from 09/04/2015 to 06/09/2015

✓ 41 field-samples in 2014 and 28 in 2015 (DOC, CDOM, TSS)
Synchronisation of in-situ measurements and Spot 5 Take 5 acquisitions

- 25 ST5 scenes from 09/04/2015 to 06/09/2015
- 41 field-samples in 2014 and 28 in 2015 (DOC, CDOM, TSS)
- Only 6 ST5 scenes and 6 L8 scenes selected (clouds, hazing effects, acquisitions during the ice-period, too large gaps)
- 6 dates during the peakflow period (namely 22/05)
Introduction

Data and Methods

Results

Conclusion

Time-series

![Time-series images](image)

Image corrections

- Surface reflectance products were used
 - MACCS processor (Hagolle et al, 2015)
 - L8SR (L8SR Product Guide)

Field sample treatments

- Field measurements concern DOC (mg/L), CDOM (m\(^{-1}\)) and TSS (mg/L)
- Absorbance at 440 nm was chosen (Brezonik et al, 2015)
Methodological flowchart

Introduction

Data and Methods

Results

Conclusion

Optical satellite acquisitions

Draw an extraction mask

Extract water surface reflectances

Spectral variables

Step 3

BD in-situ « DOC »

BD in-situ « CDOM »

Linear regression

Correlation?

[KO]

[OK]

Multiple Linear regression

CDOM proxy

Step 2

CDOM model retrieval

CDOM prediction

DOC model retrieval

DOC prediction

Living Planet Symposium 2016 – Prague (9-13 May)
CDOM as a proxy to retrieve DOC concentrations?

- All field-samples were used \((N = 69)\)
- Goal: More robust statistical relationship

Extraction of water surface reflectances

- A water extraction was defined:
 - 15 km North-South
 - from 300 m to river banks
- Goal: increasing the possibility to have cloud-free pixels
- \([\text{Min}, \text{max}, \text{mean}, \text{std}]\) in Green and Red channels of each spatial scene
Methodological flowchart

Optical satellite acquisitions

Draw an extraction mask

Extract water surface reflectances

Spectral variables

Multiple Linear regression

Linear regression

Correlation ?

[KO]

[OK]

BD in-situ «DOC»

BD in-situ «CDOM»

DOC model retrieval

CDOM model retrieval

CDOM prediction

DOC prediction

Step 4
CDOM algorithm development and statistical analyses

✓ Based on existing models developed for oceans, lakes or rivers

✓ Kutser (2005) on Swedish lakes

→ green-red ratio

✓ Griffin (2011) on Kolyma river (Northern-Siberia)

→ green-blue ratio + red

✓ Spectral band multiplications were also tested (interaction term)

✓ Goodness of fit was examined with R² and Root Mean Square Error (RMSE)
CDOM can be used as a proxy to retrieve DOC concentrations in the Yenisei river.

![Graph showing correlation between CDOM and DOC](image)

$$R^2 = 0.84$$
$$p < 0.001$$
$$N = 69$$
The CDOM model developed shows high performances

\[
\text{CDOM} = -681.4 \times \text{[Green]} + 16410.9 \times \text{[Green:Red]}
\]

- \(R^2 = 0.76 \quad p < 0.001 \)
- \(\text{RMSE} = 1.2 \quad N = 12 \)

- \(R^2 = 0.79 \quad p < 0.001 \)
- \(\text{RMSE} = 1.4 \quad N = 12 \)
Shorter and longer wavelengths interaction to retrieve DOC concentrations

\[\text{CDOM} = 681,4\cdot\text{[Green]} + 16410,9\cdot\text{[Green:Red]} \]
Shorter and longer wavelengths interaction to retrieve DOC concentrations

\[\text{CDOM} = -681.4 \times [\text{Green}] + 16410.9 \times [\text{Green:Red}] \]

✓ Negative relationship between CDOM and [Green]
✓ Expected relationship
Shorter and longer wavelengths interaction to retrieve DOC concentrations

\[\text{CDOM} = -681.4 \times \text{[Green]} + 16410.9 \times \text{[Green:Red]} \]

- Negative relationship between CDOM and [Green]
- Expected relationship
- Relationship between [Green] and CDOM depends on red reflectance values
- TSS strongly reflects light in red band
Shorter and longer wavelengths interaction to retrieve DOC concentrations

\[
\text{CDOM} = -681.4 \times \text{[Green]} + 16410.9 \times \text{[Green:Red]}
\]

- Negative relationship between CDOM and [Green]
- Expected relationship
- Relationship between [Green] and CDOM depends on red reflectance values
- TSS strongly reflects light in red band

→ For high values of TSS (> 15 mg/L), statistical relationship between shorter wavelengths and CDOM is noised
Mapping DOC concentrations during a whole open-water season

Living Planet Symposium 2016 – Prague (9-13 May)
If combined with high-spatial resolution, multi-temporal remote sensing data are precious to retrieve DOC in Arctic rivers.

☑ DOC evaluations:
 - To evaluate DOC in a hot-moment
 - To evaluate the spatial variability of DOC at largest scales

☑ Methodologically
 - To increase the possibility to have cloud-free scenes
 - To select pixels between cloud or ice-breaks
 - To apply more accurate atmospheric corrections
If combined with high-spatial resolution, multi-temporal remote sensing data are precious to retrieve DOC in Arctic rivers

✓ DOC evaluations:
 ✓ To evaluate DOC in a hot-moment
 ✓ To evaluate the spatial variability of DOC at largest scales

✓ Methodologically
 ✓ To increase the possibility to have cloud-free scenes
 ✓ To select pixels between cloud or ice-breaks
 ✓ To apply more accurate atmospheric corrections

Sentinel 2/Landsat 8 synergies are promising to retrieve DOC in Great Arctic Rivers
Conclusion

✓ An effective CDOM retrieval algorithm with six dates in the freshest period
✓ Additional dates in the model will be needed (only 12 dates)

✓ Shorter and longer wavelengths combinations are powerful
✓ Potential TSS perturbations have to be taken into account

Perspectives

✓ Low and High spatial resolution could be complementary
✓ Sentinel 2 acquisitions in Igarka:
 ➔ Surface reflectance products will be delivered
 ➔ New field campaigns will be driven
 ➔ Further studies are coming…
Thanks!

Questions ?