
Iota2 latest release - Deep Learning at the menu
Iota2 dev team

September 16, 2022

Contents
1 New iota2 release 1

2 Classification using deep learning 2
2.1 Material . 2

2.1.1 Satellite image time series . 2

2.1.2 Preparation of the ground truth data . 2

2.2 Configuration of iota2 . 4

2.2.1 Config and ressources files . 4

2.2.2 Iteration over the different sub ground truth files . 5

2.3 Results . 8

2.4 Numerical results . 8

2.4.1 Results for the different sub ground truth files . 9

3 Conclusions 11

4 Acknowledgement 12

5 References 12

1 New iota2 release
The last version of iota2 (https://framagit.org/iota2-project/iota2) released on [2022-06-06 Mon] in-
cludes many new features. A complete list of changes is available here. Among them, let cite a few that may
be of interest for users:

• External features with padding: External features is a iota2 feature that allows to include user-defined
computation (e.g. spectral indices) in the processing chain. They come now with a padding option. Each
chunk can have an overlap with all his adjacent chunks and therefore it is possible to perform basic
spatial processing with external features without discontinuity issues. Check this for a toy example.

issue: https://framagit.org/iota2-project/iota2/-/issues/466
doc: https://docs.iota2.net/develop/external_features.html

• External features with parameters: The function provided by the user can now have their parameters set
directly in the configuration file. It is no longer necessary to hard-coded them in the python file.

issue: https://framagit.org/iota2-project/iota2/-/issues/393
doc: https://docs.iota2.net/develop/external_features.html#examples

• Documentation: The documentation is now hosted at https://docs.iota2.net/master/. An open
access labwork is also available https://docs.iota2.net/training/labworks.html for advanced users
that have already done the tutorial from the documentation.

• Deep Learning workflow: iota2 is now able to perform classification with (deep) neural networks. It is
possible to use either one of the pre-defined network architectures provided in iota2 or to define its own
architecture. The workflow is based on the library Pytorch.

1

https://framagit.org/iota2-project/iota2
https://framagit.org/iota2-project/iota2/-/blob/develop/RELEASE_NOTES.rst
https://docs.iota2.net/training/labworks.html#org62634df
https://framagit.org/iota2-project/iota2/-/issues/466
https://docs.iota2.net/develop/external_features.html
https://framagit.org/iota2-project/iota2/-/issues/393
https://docs.iota2.net/develop/external_features.html#examples
https://docs.iota2.net/master/
https://docs.iota2.net/training/labworks.html
https://pytorch.org/

issue: https://framagit.org/iota2-project/iota2/-/issues/194
doc: https://docs.iota2.net/develop/deep_learning.html

Introducing the deeplearning workflow was a hard job: including all the machinery for batches training as
well as various neural architectures in the workflow has introduced some major internal changes in iota2. A lot
of work were done to ensure iota2 is able to scale well accordingly the size of the data to be classified when
deep learning is used. In the following, we will provide an example of classification of large scale Sentinel 2

time series using deep learning.

2 Classification using deep learning
In this post we discuss about deep learning in iota2. We describe the data set used for the experiment, the
different pre-processing done to prepare the different training/validation files, the deep neural network used
and how it is learned with iota2. Then classification results (classification accuracy as well as classification
maps) will be presented to enlight the capacity of iota2 to easily perform large scale analysis, run various
experiments and compare their outputs.

2.1 Material
2.1.1 Satellite image time series

For the experiments, we use all the Level-2A acquisitions available from Theia Data Center (https://www.
theia-land.fr/en/products/) for one year (2018) over 4 Sentinel 2 tiles ([“31TCJ”, “31TCK”, “31TDJ”,
“31TDK”]). See figure 1. The raw files size amount to 777 Gigabytes.

Figure 1: Sentinel 2 tiles used in the experiments (background map © OpenStreetMap contributors).

2.1.2 Preparation of the ground truth data

For the ground truth, we have extracted the data from the database used to produce the OSO product (https:
//www.theia-land.fr/en/ceslist/land-cover-sec/). The database was constructed by merging several
open source databases, such as Corine Land Cover. The whole process is described in (Inglada et al. 2017). The

2

https://framagit.org/iota2-project/iota2/-/issues/194
https://docs.iota2.net/develop/deep_learning.html
https://www.theia-land.fr/en/products/
https://www.theia-land.fr/en/products/
https://www.theia-land.fr/en/ceslist/land-cover-sec/
https://www.theia-land.fr/en/ceslist/land-cover-sec/

23-categories nomenclature is detailed here: https://www.theia-land.fr/en/product/land-cover-map/.
An overview is given figure 2.

Figure 2: Zoom of the ground truth over the city of Toulouse. Each colored polygon corresponds to a labelized
area (background map © OpenStreetMap contributors).

Sub data set This step is not mandatory and is used here only for illustrative purpose.
In order to run several classifications and to assess quantitatively and qualitatively the capacity of deep

learning model, 4 sub-data set were build using a leave-one-tile-out procedure: training samples for 3 tiles will
be used to train the model and samples for the remaining tile will be left out for testing. The process will be
repeated for each subset of 3 tiles from a set of 4 tiles (i.e. 4 times !). We will see later how iota2 allows to
perform several classifications tasks from different ground truth data easily.

For now, once you have a vector file containing your tiles and the (big) database, running this kind of code

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-
/blob/main/scripts/prepare_vector_data.py

should do the job (at least for us it does!): construct 4 couples of training/testing vector files. You can adapt it
to your own configuration. An example of one sub data set is given figure 3.

Clean the ground truth vector file The final step in the ground truth data preparation is to clean the ground
truth file: when manipulating vector files it is common to have multi-polygons, empty or duplicate geometries.
Such problematic features should be handled before running iota2. Fortunately, iota2 is packed with the
necessary tools (check_database.py, available from the iota2 conda environment) to prevent all these annoying
things that happen when you process large vector files. The code snippet in 1 shows how to run the tool on the
ground truth file.

for i in 0 1 2 3
do

check_database.py \
-in.vector ../data/gt_${i}.shp \
-out.vector ../data/gt_${i}_clean.shp \
-dataField code -epsg 2154 \
-doCorrections True

done

Listing 1: Shell scripts to clean the 4 sub data-set.

3

https://www.theia-land.fr/en/product/land-cover-map/
https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/prepare_vector_data.py
https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/prepare_vector_data.py

Figure 3: Sub data set: polygons from the brown area are used to train the model and polygons from the
gray area are used to test the model. There are 4 different configurations, one for each tile left-out.
(background map © OpenStreetMap contributors).

2.2 Configuration of iota2
This part is mainly based on the documentation (https://docs.iota2.net/develop/deep_learning.html) as
well as a tutorial we gave (https://docs.iota2.net/training/labworks.html). We encourage the interested
reader to carefully reads these links for a deeper (!) understanding.

2.2.1 Config and ressources files

As usual with iota2, the first step is to set-up the configuration file. This file hosts most of the informa-
tion required to run the computation (where are the data, the reference file, the output folder etc . . .).
The following link is a good start to understand the configuration file: https://docs.iota2.net/develop/
i2_classification_tutorial.html#understand-the-configuration-file. We try to make the following
understandable without the need to fully read it.

To compute the classification accuracy obtained on the area covered by ground truth used for training, we
indicate to iota2 to split polygons from the ground truth file into two files, one for training and one for testing
with a ratio of 75%:

split_ground_truth : True
ratio : 0.75

It means that 75% of the available polygons for each class is used for training while the remaining is used for
testing. Note that we do not talk about pixels here. By splitting at the polygons level, we ensure that pixels
from a polygon are used either for training or testing. This is a way to reduce the spatial auto-correlation effect
between pixels when assessing the classification accuracy.

We need now to set-up how training pixels are selected from the polygons. Iota2 relies on OTB sam-
pling tools (https://www.orfeo-toolbox.org/CookBook/Applications/app_SampleSelection.html). For
this experiment, we asked for a maximum number of pixels of 100000 with a periodic sampler.

arg_train :
{

sample_selection :
{

"sampler" : "periodic"
"strategy": "constant"
"strategy.constant.nb" : 100000

}

4

https://docs.iota2.net/develop/deep_learning.html
https://docs.iota2.net/training/labworks.html
https://docs.iota2.net/develop/i2_classification_tutorial.html#understand-the-configuration-file
https://docs.iota2.net/develop/i2_classification_tutorial.html#understand-the-configuration-file
https://www.orfeo-toolbox.org/CookBook/Applications/app_SampleSelection.html

}

We are working on 4 different tiles, each of them having its own temporal sampling. Furthermore, we need
to deals with clouds issues (Hagolle et al. 2010). Iota2 uses temporal gap-filling as discussed in (Inglada et
al. 2015). In this work, we use a temporal step-size of 10 days, i.e., we have 37 dates. Iota2 also computes
per default three indices (NDVI, NDWI and Brightness). Hence, for a each pixel we have a set of 481 features
(37×13).

For the deep neural network, we use the default implementation in iota2. However, it is possible to define its
own architecture (https://docs.iota2.net/develop/deep_learning.html?highlight=deep%20learning#
desc-dl-module). In our case, the network is composed of four layers (see Table 1) with a relu function
between each of them (https://framagit.org/iota2-project/iota2/-/blob/develop/iota2/learning/
pytorch/torch_nn_bank.py#L276).

Table 1: Network architecture.
Input size Output size

First Layer 481 240

Second Layer 240 69

Third Layer 69 69

Last Layer 69 23

ADAM solver was used for the optimization, with a learningrate of 10−5 and a batch size of 4096. 200

epochs were performed and a validation sample set, extracted from the training pixels is used to monitor the
optimization. The best model in terms of Fscore is selected. Off course all these options are configurable with
iota2. A full configuration file is given in Listing 2.

The configuration file is now ready and the chain can be launched, as described in the documentation.
Classification accuracy will be outputted in the directory final as well as the final classification map and
related iota2 outputs.

2.2.2 Iteration over the different sub ground truth files

However, in this post we want to go a bit further to enlighten how easy it is to run several simulations with
iota2. As discussed in 2.1.2, we have generated a set of pair of spatially disjoint ground truth vector files for
training and for testing. Also, remind that iota2 starts by splitting the provided training ground truth file into
two spatially disjoints files, one used to train the model and the other used to test the model. In such particular
configuration, we have now two test files:

1. One extracted from the same area than the training samples,

2. One extracted from a different area than the training samples.

With this files, we can do a spatial cross validation estimation of the classification accuracy, as discussed in
(Ploton et al. 2020). To perform such analysis, we first stop the chain after the prediction of the classification
map (setting the parameter as last_step : ’mosaic’) and we manually add another step to estimate the
confusion matrix from both sets. We rely on the OTB tools: https://www.orfeo-toolbox.org/CookBook/
Applications/app_ComputeConfusionMatrix.html?highlight=confusion%20matrix. The last ingredient is
to be able to loop over the different tiles configurations, i.e., to iterate over the cross-validation folds. This is
where iota2 is really powerful: we just need to change few parameters in the configuration file to run all the
different experiments. In this case, we have to change the ground truth filenames and the output directory. To
make it simple, we indexed our simulations from 0 to 3 and use sed shell tool to modify the configuration file
in the big loop:

sed -i "s/outputs_\([0-9]\)/outputs_${REGION}/" /home/fauvelm/BlogPostIota2/configs/config_base.cfg
sed -i "s/gt_\([0-9]\)_clean/gt_${REGION}_clean/" /home/fauvelm/BlogPostIota2/configs/config_base.cfg

5

https://docs.iota2.net/develop/deep_learning.html?highlight=deep%20learning#desc-dl-module
https://docs.iota2.net/develop/deep_learning.html?highlight=deep%20learning#desc-dl-module
https://framagit.org/iota2-project/iota2/-/blob/develop/iota2/learning/pytorch/torch_nn_bank.py#L276
https://framagit.org/iota2-project/iota2/-/blob/develop/iota2/learning/pytorch/torch_nn_bank.py#L276
https://docs.iota2.net/develop/i2_classification_tutorial.html#iota2-launch
https://www.orfeo-toolbox.org/CookBook/Applications/app_ComputeConfusionMatrix.html?highlight=confusion%20matrix
https://www.orfeo-toolbox.org/CookBook/Applications/app_ComputeConfusionMatrix.html?highlight=confusion%20matrix

chain :
{

output_path : "/datalocal1/share/fauvelm/blog_post_iota2_output/outputs_3"
remove_output_path : True
check_inputs : True
list_tile : "T31TCJ T31TDJ T31TCK T31TDK"
data_field : "code"
s2_path : "/datalocal1/share/PARCELLE/S2/"
ground_truth : "/home/fauvelm/BlogPostIota2/data/gt_3_clean.shp"

spatial_resolution : 10
color_table : "/home/fauvelm/BlogPostIota2/data/colorFile.txt"
nomenclature_path : "/home/fauvelm/BlogPostIota2/data/nomenclature.txt"
first_step : 'init'
last_step : 'validation'
proj : "EPSG:2154"
split_ground_truth : True
ratio : 0.75

}

arg_train :
{

runs : 1
random_seed : 0
sample_selection :
{

"sampler" : "periodic"
"strategy": "constant"
"strategy.constant.nb" : 100000

}
deep_learning_parameters :
{

dl_name : "MLPClassifier"
epochs : 200
model_selection_criterion : "fscore"
num_workers : 12
hyperparameters_solver : {

"batch_size" : [4096],
"learning_rate" : [0.00001]

}
}

}

arg_classification :
{

enable_probability_map : True
}

python_data_managing :
{

number_of_chunks : 50
}

sentinel_2 :
{

temporal_resolution : 10
}

task_retry_limits :
{

allowed_retry : 0
maximum_ram : 180.0
maximum_cpu : 40

}

Listing 2: Example of configuration file. Paths need to be adapted to your set-up.

6

#/user/bin/bash

Set ulmit
ulimit -u 6000

Set conda env
source ~/.source_conda
conda activate iota2-env

Loop over region
for REGION in 0 1 2 3
do

echo Processing Region ${REGION}
(Delate and) Create output repertory
OUTDIR=/datalocal1/share/fauvelm/blog_post_iota2_output/outputs_${REGION}/
if [-d "${OUTDIR}"]; then rm -Rf ${OUTDIR}; fi
mkdir ${OUTDIR}

Update config file
sed -i "s/outputs_\([0-9]\)/outputs_${REGION}/" /home/fauvelm/BlogPostIota2/configs/config_base.cfg
sed -i "s/gt_\([0-9]\)_clean/gt_${REGION}_clean/" /home/fauvelm/BlogPostIota2/configs/config_base.cfg

Run iota2
Iota2.py \
-config /home/fauvelm/BlogPostIota2/configs/config_base.cfg \
-config_ressources /home/fauvelm/BlogPostIota2/configs/ressources.cfg \
-scheduler_type localCluster \
-nb_parallel_tasks 2

Compute Confusion Matrix for test samples
otbcli_ComputeConfusionMatrix \
-in ${OUTDIR}final/Classif_Seed_0.tif \
-out ${OUTDIR}confu_test.txt \
-format confusionmatrix \
-ref vector -ref.vector.in /home/fauvelm/BlogPostIota2/data/tgt_0.shp \
-ref.vector.field code \
-ram 16384

Merge validation samples
ogrmerge.py -f SQLITE -o ${OUTDIR}merged_val.sqlite \

${OUTDIR}dataAppVal/*_val.sqlite

Compute Confusion Matrix for train samples
otbcli_ComputeConfusionMatrix \
-in ${OUTDIR}final/Classif_Seed_0.tif \
-out ${OUTDIR}confu_train.txt \
-format confusionmatrix \
-ref vector -ref.vector.in ${OUTDIR}merged_val.sqlite \
-ref.vector.field code \
-ram 16384

done

python compute_accuracy.py

Listing 3: Script to perform spatial cross validation. Paths need to be adapted to different configuration.
Merging validation samples from the train set is required because iota2 extracts samples on a tile basis for the
validation samples (behavior subject to modification in future release).

7

The global script is given in Listing 3.
Then we can compute classification metrics, such as the overall accuracy, the Kappa coefficient and the

average Fscore. For this post, we have written a short python script to perform such operations: https:
//gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/compute_accuracy.py.

We can just run it, using nohup for instance, take a coffee, a slice of cheesecake and wait for the results :)

2.3 Results
Results provided by iota2 will be discussed in this section. The idea is not to perform a full analysis, but to
glance through the possibilities offer by iota2. The simulations were run on computer with 48 Intel(R) Xeon(R)
Gold 6136 CPU @ 3.00GHz, 188 Gb of RAM and a NVIDIA GV100GL [Tesla V100 PCIe 32GB].

2.4 Numerical results
First we can check the actual number of training samples used to train the model. Iota2 provides the to-
tal number of training samples used (https://docs.iota2.net/develop/iota2_samples_management.html?
highlight=class_statistics%20csv#tracing-back-the-actual-number-of-samples). Table 2 provides
the number of training samples extracted to learn the MLP. Yes, you read it well 1.8 millions of sam-
ples for only 4 tiles. During training, 80% of the samples were used to optimized the model and 20% were
used to validate and monitor the model after each epoch. Four metrics were computed automatically by iota2

to monitor the optimization: the cross-entropy (same loss that is used to optimize the network), the overall
accuracy, the Kappa coefficient and the F-score. Figures 4 and 5 display the evolution of the different metrics
along the epochs. The model used for the classification is the one with the highest F-score.

Table 2: Number of training samples used.
Class Name Label Total
Continuous urban fabric 1 67899

Discontinuous urban fabric 2 100000

Industrial and commercial units 3 100000

Road surfaces 4 47664

Rapeseed 5 100000

Straw cereals 6 100000

Protein crops 7 100000

Soy 8 100000

Sunflower 9 100000

Corn 10 100000

Rice 11 0

Tubers / roots 12 53094

Grasslands 13 100000

Orchards 14 100000

Vineyards 15 100000

Broad-leaved forest 16 100000

Coniferous forest 17 100000

Natural grasslands 18 100000

Woody moorlands 19 100000

Natural mineral surfaces 20 11675

Beaches, dunes and sand plains 21 0

Glaciers and perpetual snows 22 0

Water Bodies 23 100000

Others 255 0

Total 1780332

For this set-up, the overall accuracy, the Kappa coefficient and the average F1 score are 0.85, 0.83 and 0.73,
respectively. Which is in line with others results over the same area (Inglada et al. 2017).

Classification metrics provide quantitative assessment of the classification map. But it is still useful to do
a qualitative analysis of the maps, especially at large scale where phenology, topography and others factors

8

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/compute_accuracy.py
https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/compute_accuracy.py
https://docs.iota2.net/develop/iota2_samples_management.html?highlight=class_statistics%20csv#tracing-back-the-actual-number-of-samples
https://docs.iota2.net/develop/iota2_samples_management.html?highlight=class_statistics%20csv#tracing-back-the-actual-number-of-samples

Figure 4: Loss function on the training and validation set.

Figure 5: Classification metrics computed in the validation set.

can influence drastically the reflectance signal. Off course, Iota2 allows to output the classification maps ! We
choose three different sites, display on figures 6, 7 and 8. The full classification map is available here.

Figure 6: Classification map for an area located between two tiles.

2.4.1 Results for the different sub ground truth files

The figure 9 shows the Fscore for the 4 models (coming from the 4 different runs), and the 2 test sets. We
can easily see that depending on the tile left out, the difference of classification accuracy in terms of Fscore
between test samples extracted from the same or disjoint area can be significant. Discussing the reasons why
the performance are decreasing and what metrics should we use to asses the map accuracy are out of the scope
of this post. It is indeed a controversy topic in remote sensing (Wadoux et al. 2021). We just want to emphasize
that iota2 simplifies and automatizes a lot the process of validation, especially at large scale. Using this spatial
cross validation with 4 folds, the mean estimated Fscore is 0.59 with a standard deviation of 0.08, which is

9

https://mycore.core-cloud.net/index.php/s/P1tA4Cf6x8V1hsl

Figure 7: Classification map for an area over the city of Toulouse.

Figure 8: Classification map for a crop land area.

10

indeed much lower than the 0.73 estimated in the previous part.

Figure 9: Fscore computed on samples from the same tiles used for training (train) and from one tile left out
from the training region (test).

The different classification maps are displayed in the animated figures ??, ?? and ??. The first one displays a
tricky situation at a frontier of two tiles. We can see a strong discontinuity, whatever the model used. For the
second case over Toulouse, there is a global agreement between the 4 models, except for the class Continuous
Urban Fabric (pink) that disappears for one model: the one learnt without data coming from the tile containing
Toulouse (T31TCJ). The last area exhibits a global agreement with some slight disagreements for some crops.
Note, the objective is not to fuse/combine the different results, but rather to quantitatively observed the
differences in terms of classification maps when the ground truth is changed.

./animated_0.gif

./animated_1.gif

./animated_2.gif
A finer analysis could be done, indeed. But we let this as an homework for interested reader: all the materials

for the simulation are available here

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot

and the Level-2A MAJA processed Sentinel-2 data are downloadable from Theia Data Center (try this out:
https://github.com/olivierhagolle/Sentinel-download), while the ground truth data can be downloaded
here.

3 Conclusions
To conclude, in this post we have presented briefly the latest release of iota2. Then, we focused on the deep
learning classification workflow to classify 4 tiles of one year of Sentinel-2 time series. Even if it was only four
tiles, it amount to process around 800 Gb of data, and with our data set, about 4 × 107 pixels to be classified.
We have skipped a lot of parts of the worklow, that iota2 takes care (projection, upsampling, gapfilling,

11

./animated_0.gif
./animated_1.gif
./animated_2.gif
https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot
https://github.com/olivierhagolle/Sentinel-download
https://mycore.core-cloud.net/index.php/s/XhaKnB6wZqSzW6A

streaming, multiple run, mosaicing to mention few). The resulting simulation allows to assess qualitatively
and quantitatively the classification maps, in a reproducible way: you got the version of iota2 and the config
file, you can reproduce your results.

From a machine learning point of view, for this simulation, we have processed a lot of data easily (check
publications with 2 millions of training pixels, we don’t find that much with open source tools). Iota2 allows
to concentrate on the definition of the learning task. We make it simple here, an moderate size MLP. But
much more can be done, regarding the architecture of the neural network, the training data preparation or
post-processing. If you are interested, you can try: again everything is open source. We will be very happy to
welcome and help you: https://framagit.org/iota2-project/iota2/-/issues.

Finally, with a few boilerplate code, we were able to perform spatial cross validation smoothly.
In a close future, we plan to release a new version that will also handle regression: currently only categorial

data is supported in learning.

4 Acknowledgement
Iota2 development team is composed of Arthur Vincent, CS Group, from the beginning, recently joined
by Benjamin Tardy, CS Group. Hugo Trentesaux spend 10 months (October 2021 - July 2022) in the team.
Developments are coordinated by Jordi Inglada, CNES & CESBIO-lab. Promotion and training are ensured by
Mathieu Fauvel, INRAe & CESBIO-lab and Vincent Thierion, INRAe & CESBIO-lab.

Currently, the development are funded by several projects: CNES-PARCELLE, CNES-SWOT Aval, ANR-
MAESTRIA and ANR-3IA-ANITI with the support of CESBIO-lab and Theia Data Center. Iota2 has a steering
committee which is described here.

We thank the Theia Data Center for making the Sentinel-2 time series available and ready to use.

5 References
Hagolle, O., M. Huc, D. Villa Pascual, and G. Dedieu. 2010. “A Multi-Temporal Method for Cloud Detection,
Applied to Formosat-2, Venµs, Landsat and Sentinel-2 Images.” Remote Sensing of Environment 114 (8): 1747–55.
doi:https://doi.org/https://doi.org/10.1016/j.rse.2010.03.002.

Inglada, Jordi, Marcela Arias, Benjamin Tardy, Olivier Hagolle, Silvia Valero, David Morin, Gérard Dedieu,
et al. 2015. “Assessment of an Operational System for Crop Type Map Production Using High Temporal and
Spatial Resolution Satellite Optical Imagery.” Remote Sensing 7 (9): 12356–79. doi:10.3390/rs70912356.

Inglada, Jordi, Arthur Vincent, Marcela Arias, Benjamin Tardy, David Morin, and Isabel Rodes. 2017.
“Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time
Series.” Remote Sensing 9 (1). doi:10.3390/rs9010095.

Ploton, Pierre, F. Mortier, Maxime Réjou-Méchain, Nicolas Barbier, N. Picard, V. Rossi, C. Dormann, et
al. 2020. “Spatial validation reveals poor predictive performance of large-scale ecological mapping models.”
Nature Communications 11: 4540 [11]. doi:10.1038/s41467-020-18321-y.

Wadoux, Alexandre M.J.-C., Gerard B.M. Heuvelink, Sytze de Bruin, and Dick J. Brus. 2021. “Spatial
Cross-Validation Is Not the Right Way to Evaluate Map Accuracy.” Ecological Modelling 457: 109692. doi:https:
//doi.org/https://doi.org/10.1016/j.ecolmodel.2021.109692.

12

https://framagit.org/iota2-project/iota2/-/issues
https://www.csgroup.eu/en/
https://www.csgroup.eu/en/
https://www.cesbio.cnrs.fr/
https://www.theia-land.fr/
https://framagit.org/iota2-project/iota2/-/wikis/Project-Steering-Committee
https://doi.org/https://doi.org/10.1016/j.rse.2010.03.002
https://doi.org/10.3390/rs70912356
https://doi.org/10.3390/rs9010095
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2021.109692
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2021.109692

	New iota2 release
	Classification using deep learning
	Material
	Satellite image time series
	Preparation of the ground truth data

	Configuration of iota2
	Config and ressources files
	Iteration over the different sub ground truth files

	Results
	Numerical results
	Results for the different sub ground truth files

	Conclusions
	Acknowledgement
	References

