Carbon footprint assessment for IRAP *Final report*

Pierrick MARTIN, Jürgen KNÖDLSEDER pour la Commission Environnement-Transition de l'IRAP

JST - 08 Février 2022

Contents

- Motivation for the work: global warming
- Bilan Carbone[©] methodology: principles and practice
- Scope of the assessment
- Results
- Specific case of astronomical research infrastructures
- Avenues for reduction

Note: $GHG = greenhouse \ gases$ $CO_2, CH_4, N_2O,...$

Carbon accounting

Key principles

- Decision-making tool in view of low-carbon transition strategy
- Identify emissions an activity depends on/generates while running
- Determine maximum leverage for action (on input and output flows)

Can I still perform my activity according to current standards if a certain source of emissions is removed ?

In practice:

GHG amount = activity data (AD) x emission factor (EF) Example: $120 \text{ kg } \text{CO}_2\text{eq} = 2000 \text{ kWh } x 0.06 \text{ kg } \text{CO}_2\text{eq}/\text{kWh}$

Main difficulties: AD not always accessible or accurate major uncertainties on some EF

Note: CO₂eq includes gases other than CO₂: CH₄, N₂O,... 3

- Reference year: activity period concerned
 - 2019 (pre-covid)
- Organisation: facilities, staff, and activities concerned
 - Sites: Belin, Roche, Tarbes
 - People: 116 C/EC 78 ITA/CDD 69 PhD/Postdocs = 263 pers.
 - Activities: all except most of teaching and some support services
- Operations: GHG-emitting operations concerned
 - Direct emissions (ex: own vehicles) Scope 1
 - Indirect emissions from energy (ex: electricity) Scope 2
 - Other indirect emissions (ex: travels, purchases) Scope 3

Results (restricted perimeter)

Greenhouse gases emissions for IRAP - Restricted perimeter (2019) - 3316 tCO2e

Local infrastructure subdominant (~800 tCO2e) Heating/Electricity emissions pretty low because low-carbon sources (wood,nuclear) Typical uncertainties +/- 20-50% - Formally a lower limit 5

Results (full perimeter)

Greenhouse gases emissions for IRAP - Full perimeter (2019) - 7416 tCO2e

The use of external research infrastructures dominates (see next part)

Astronomical research infrastructures

Astronomical Research Infrastructures

- Space telescopes
- Space probes (plasma, planetary)
- Ground-based observatories
- Why should astronomers consider their footprint?
 - Without astronomical research infrastructures astronomy would not be possible (astronomers depend on them)
 - Furthermore astronomers have some responsibility
 - Astronomers invent Research Infrastructures and contribute to building/operating them (share in responsibility)
 - Without astronomers there wouldn't be any astronomical research infrastructures

Emission factors

Activity	Emission factor
Space missions (based on payload wet mass)	50 t CO ₂ e / kg
Space missions (based on mission cost)	140 t CO ₂ e / M€
Construction of ground-based observatories	240 t CO ₂ e / M€
Operations of ground-based observatories	250 t CO ₂ e / M€

Selected other activities for comparison

Activity	Emission factor
Insurance, banking and advisory services,	110 t CO ₂ e / M€
Architecture and engineering, building maintenance	170 t CO ₂ e / M€
Installation and repair of machines and equipment	390 t CO ₂ e / M€
Metal products (aluminium, cupper, steel,)	1700 t CO ₂ e / M€
Mineral products (concrete, glass,)	1800 t CO ₂ e / M€

Our emission factors are on the low side of other sector-based values. Will make decarbonisation challenging.

Their carbon footprint

We computed the lifecycle and annual carbon footprint of 85 astronomical research infrastructures used by IRAP researchers for refereed publications in 2019

Category	Lifecycle footprint (Mt CO ₂ e)	Annual footprint (kt CO ₂ e / yr)
Space missions	4.8 ± 0.6	338 ± 49
Ground-based	3.0 ± 0.8	194 ± 64
Total	7.8 ± 1.4	532 ± 106

Uncertainty in carbon footprint of individual facility assumed to be 80%. For total carbon footprints, uncertainties are summed in quadrature.

Footprint attribution to IRAP

We attributed the footprint of each facility based on the fraction of IRAP authors that co-signed papers using a given facility in 2019 (fraction typically ~ 1%). Summing over the attributions gives the IRAP share of the carbon footprint.

Category	IRAP carbon footprint (t CO ₂ e)
Space missions	2 663 ± 388
Ground-based	1 289 ± 490
Total	3 953 ± 689
Per IRAP staff (263)	15.0 ± 2.6

Avenues for reduction

• Carbon footprint assessment for IRAP in 2019 is now over

- Extended scope including almost all facets of research activity
- Final paper nearly ready (and one published on infrastructures)
- Will be made available to all of you

• Operating IRAP requires 7400 tCO2e/yr or 28 tCO2e/yr/staff member

- 4100 tCO2e from use of external research infrastructures
- 1300 tCO2e from purchase of goods and services (for instrument development)
- 1200 tCO2e from professional travels (mostly air)
- 800 tCO2e only from local infrastructure
- Avenues for reduction: we need to use all levers !
 - Local/shorter-term perimeter: travels, commuting, computers
 - Intermediate: purchases/low-carbon technologies
 - Community-scale/longer-term: rethinking infrastructures

Now entering reduction phase. Please contribute to design/implementation !

Acknowledgments

- Many thanks to
 - Philippe Louarn, Christelle Feugeade, Josette Garcia
 - Jean-Louis Lefort, Marjorie Cloup
 - Teddy Baï, Cédric Hillembrand
 - Pauline Bénard
 - Jean-François Botte, Sélim Benguesmia
 - Marie-Pierre Arberet, Stéphanie Baylac, Sylvie Cieutat
 - Danièle Millet
 - DR14 for the IFC training
 - Our OMP colleagues

Backup slides

Purchase of goods and services

ID	Category	Expense	Emission	Share
		(k€)	$(t CO_{2e})$	(%)
Е	Consulting/Insurance/Human Resources	493	122	9.17
I	Computing/Telecommunications	668	117	8.77
0	Optical	518	174	13.01
T	Electronics	673	262	19.64
R	Mechanics/Automation	354	144	10.78
C	Communication/Documentation	159	44	3.30
P	Nuclear/Particle Physics	144	134	10.02
A	General supplies	139	59	4.43
F	Freight/Transport	43	28	2.16
V	Vacuum	82	55	4.10
В	Buildings/Infrastructure	128	53	3.96
G	Cryogenics/Laboratory gases	28	28	2.10
Ν	Chemistry/Biology	47	54	4.05

Table 5: Distribution of the main sources of GHG emissions in the purchase of goods and services, listing only those with an individual share > 2% (which together cumulate to more than 95% of the total). The first column corresponds to the identifier in the French NACRES nomenclature.

Avenue for local reductions

Scenario	Emissions	Gain			
Professional travels (2019: 116	$9 t CO_{2e} $ or 3	35% total)			
1 - Train in FR	952	-19% (total: -7%)			
2 - Plane 2 non-EU	977	-16% (total: -6%)			
3 - Train in FR, Plane 4 EU+2 non-EU	719	-38% (total: -14%)			
4 - Train in FR, Plane 2 EU+1 non-EU	508 -57% (total: -20)				
Commuting (2019: 185 t C	$CO_{2e} \text{ or } 6\% \text{ t}$	total)			
1 - $<\!2.5 \mathrm{km}$ bike/foot & -20% car	155	-16% (total: -1%)			
2 - <5 km bike/foot & -40% car	125	-32% (total: $-2%$)			
3 - like 2 with 50% electric/hybrid cars	103	-44% (total: -3%)			
4 - 3 days remote working	152	-18% (total: -1%)			
Meals (2019: 85 t CO_2	$_{\rm e}$ or 3% tota	1)			
1 - 50% classical meals \mapsto flexitarian	65	-24% (total: -1%)			
2 - 50% flexitarian $+50\%$ vegetarian	37	-56% (total: -1%)			
3 - 100% vegetarian	22	-63% (total: -2%)			
Computer equipment (2019: 8	$1 t CO_{2e} $ or 2	2% total)			
1 - 4-year lifetime for computers	59	-27% (total: -1%)			
2 - 6-year lifetime for computers	50	-38% (total: -1%)			
Heating and electricity (2019: 111+	$-138 t CO_{2e} d$	or $3+4\%$ total)			
1 - Heating -49% by 2030	57	-49% (total: -2%)			
2 - Electricity -49% by 2030	70	-49% (total: -2%)			

Table 7: Benefits from various reduction scenarios. The gain column gives first the relative gain, the decrease for the source of emission under consideration, and second the total gain, the decrease of the total footprint without the impact of using external research infrastructures use (i.e. 3316 t CO_{2e}).

Professional travels

Add plots from Philippe once reformatted

What's our target?

Generic Method

Activity data

e.g. mission cost, payload weight, operation costs

Method of calculation

• Space missions

Carbon footprint_{c/m} = $A_{c/m} \times EF_{c/m}$

- Full mission cost or payload launch mass as activity data
- Aggregate construction and operations (operations footprint being generally small compared to construction)

Ground-based observatories

Carbon footprint = $A_{co} \times EF_{co} + A_{op} \times T \times EF_{op}$

- Treat construction and operations separately (long lifetime of ground-based observatories)
- Estimate dedicated emission factors

Greenhouse gas emissions versus cost

Carbon footprint reports of 19 French companies of the construction sector versus their turnovers (source: Base Carbone ADEME). The blue line corresponds to a monetary emission factor of 250 t CO_2e / M€, the light blue area indicates an uncertainty of 80%.

Activity Data

Mission	Payload launch mass	Mission cost	Reference	Observatory			Cost				~ [_]	- of no
	(kg)	(M€)	40		Cons	truction	Oper	rations	_	U Ollection	U	n oi pa
HST	11 110	8037	43		(IVI€) I	78	e (IVI€ / yr)	79		6261/		•
Chandra	5860	4114	44	VLI (Paranal)	1 384	80	40	81		casy		
Cassini	5820	2806	45	ALMA	1 248	58	105	58			_	- of oo
Cluster	4800	944	46	SOFIA	1 098	82	90	83	—	Collection	O	n ot co
Fermi	4 303	863	47	AAT	124	75	15	84		time oor	~	numino
INTEGRAL	4 000	419	48	VLA	345	95	10	95		lime coi	12	unning
Curiosity	3 893	2590	45	VLBA	132	00	15	03			1	
XMM	3800	1113	49	IRAM	51	25	15	0/	—	Cost da	ta	not a
Juno	3625	1 082	45	Gemini-South	135	75	13	75				
Herschel	3 400	1 1 5 2	50	CFHT	85	78	6.3	88		extensit	JNS	and
RXTE	3200	360	51	ESO 3.6m (La Silla)	99	89	5.2	89		unarada	~ 1	
SDO	3100	865	52	GBT	120	90	10	91		upyraut	52 ((Jui i
Rosetta	2 900	1 709	53	LOFAR	200	92	9.2	93		limite t	n th	o tri
Galileo	2560	1275	45	JCMT	38	94	5.5	95				Cui
MAVEN	2454	638	45	ATCA	95	96	3.5	97				
ROSAT	2 + 3 4	635	54	H.E.S.S.	49	(1)	8.8	32		USEOT	Jara	imei
MRO	2 421	000	45	MeerKAT	128	98	13	98		ontion +		$\sim \sim \sim \sim$
	2 100	320 1 027	55	GTC	125	78				oplicate		Scop
GAIA	2034	775	56	NRO	51	(1)	1.5	(1)			1	-
	1900	1/5	57	LMT	77	99	3.1	100	—	It no dat	ta w	/ere
Suzaku	1 850	1469		MLSO			1.2	101		aantriku	. 1	
AstroSat	1515	27	59	APEX	20	(1)	2.7	102		CONTRIDU	itior	1 (ev
MMS	1360	1 054	58	SMA	60	103						`
	1 270	300	61	EHT	52	104	-	-	—	Cost da	ta a	are o
WIND	1 250	500		Noto Radio Observatory			1.5	105				
STEREO	1 238	614	60	2m TBL	6.0	(2)	1.0	106		carbon 1	toot	Drini
Mars Express	1 223	374	62	2.16m (Xinglong Station)	7.3	(2)	0.7	(3)				
Dawn	1218	439	45	1.93m OHP	5.5	(2)	0.5	(3)	—	E-mail in	naui	ries
Hipparcos	1 140	933	63	THEMIS	17	(1)	1.7	(1)			YYY	100
Kenler	1 052	636	64	2.4m LiJiang (YAO)	9.6	(2)	1.0	(3)		not offer	n su	cce
GEOTAIL	1 009	030		2m HCT (IAO)	6.1	(2)	0.6	(3)				
Akari	952	106	65	1.5m Tillinghast (FLWO)	2.8	(2)	0.3	(3)		Somatir	ndei	ngg
Spitzer	950	1 188	66	1.8m (BOAO)	4.6	(2)	0.5	(3)		Sometin	11221	
SWIFT	843	279	67	1m (Pic-du-Midi)	1.0	(2)	0.1	(3)		hy extra	nola	tinc
ACE	752	215		1.3m Warsaw (OGLE)	2.0	(2)	0.2	(3)			ipula	ung
InSight	694	714	45	C2PU TAROT	2.0	(2)	0.2	(3)		contribu	itions	2
PSP	685	1310	43	1m NOWT	1.0	(2)	0.1	(3)		Sontinou)
WISE	661	335	68					. /	-	All cost	data	
TIMED	660	259	67								udla	
Double Star	560	200								to 2010		non
IMP-8	410		00							10 2013		
NICER	372	53	69									
NuSTAR	360	156	70									
TESS	325	275	71									
GALEX	280	120	67									
DEMETER	130	21	72									

21

130

DEMETER

Results

Mission	Years	Papers	Authors		Mass	s-based		Cost-based			
	5	since laun	ch	Footprint	Annual	Carbon	intensity	Footprint	Annual	Carbon	intensity
				(t CO ₂ e)	$\left(\frac{t CO_2 e}{yr}\right)$	$\left(\frac{t CO_2 e}{paper}\right)$	$\left(\frac{t CO_2 e}{author}\right)$	$(t CO_2 e)$	$\left(\frac{t CO_2 e}{yr}\right)$	$\left(\frac{t CO_2 e}{paper}\right)$	$\left(\frac{t CO_2 e}{author}\right)$
HST	30	52 497	42315	555 500	18517	11	13	1 125 197	37 507	21	27
Chandra	21	17714	23942	293 000	13952	17	12	575 955	27 426	33	24
Cassini	22	4691	9328	291 000	13227	62	31	392 902	17859	84	42
Cluster	20	2433	2959	240 000	12000	99	81	132 207	6610	54	45
Fermi	12	8619	19675	215 150	17929	25	11	120 881	10073	14	6
INTEGRAL	18	2808	10640	200 000	11111	71	19	58 720	3 262	21	6
Curiosity	7	1 360	4 3 9 3	194 650	19465	143	44	362 595	36 259	267	83
XMM	21	18859	23773	190 000	9048	10	8	155 845	7 4 2 1	8	7
Juno	8	521	1832	181 250	18 125	348	99	151 547	15 155	291	83
Herschel	11	5046	11092	170 000	15 455	34	15	161 238	14658	32	15
RXTE	24	7473	11601	160 000	6667	21	14	50 438	2102	7	4
SDO	10	4189	4946	155 000	15500	37	31	121 164	12116	29	24
Rosetta	16	1 665	4337	145 000	9063	87	33	239316	14957	144	55
Galileo	30	2432	4 5 9 4	128 000	4267	53	28	178 503	5 950	73	39
MAVEN	6	672	2023	122700	12270	183	61	89270	8927	133	44
ROSAT	30	19765	23 1 54	121 050	4 0 3 5	6	5	88 844	2961	4	4
MRO	14	1 927	4261	109000	7 786	57	26	129850	9275	67	30
Gaia	7	2550	10565	101 700	10170	40	10	145114	14511	57	14
Planck	11	5515	13388	95 000	8636	17	7	108 486	9862	20	8
SoHO	25	12218	12955	92 500	3 700	8	7	205617	8 2 2 5	17	16
Suzaku	15	3869	9525	85 300	5687	22	9				
AstroSat	5	313	5 4 0 6	75750	7 575	242	14	3 7 5 1	375	12	1
MMS	5	769	1 623	68 000	6800	88	42	147 501	14750	192	91
Venus Express	15	1 2 2 1	3 3 9 4	63 500	4 2 3 3	52	19	41 945	2796	34	12
Wind	26	3877	8254	62 500	2 4 0 4	16	8				
STEREO	14	3731	6768	61 900	4 4 2 1	17	9	86 021	6144	23	13
Mars Express	17	2969	6118	61 150	3 5 97	21	10	52 332	3078	18	9
Dawn	12	791	2175	60 885	5074	77	28	61 409	5117	78	28
Hipparcos	31	4743	8373	57 000	1 839	12	7	130 664	4215	28	16
Kepler	11	4306	9606	52 620	4784	12	5	89 037	8 0 9 4	21	9
Geotail	28	3288	3 996	50 4 50	1802	15	13				
Akari	14	2037	6993	47 600	3 400	23	7	14878	1 063	7	2
Spitzer	17	9 0 5 0	15940	47 500	2794	5	3	166 333	9784	18	10
Swift	16	7 3 9 7	17307	42 150	2634	6	2	39 0 30	2 4 3 9	5	2
ACE	23	4147	7 560	37 600	1 635	9	5				
InSight	1	58	447	34700	3 4 7 0	598	78	99 922	9 992	1723	224
PSP	2	287	1075	34 250	3 4 2 5	119	32	183 456	18346	639	171
WISE	11	6990	18877	33 050	3005	5	2	46 855	4260	7	2
TIMED	18	2 2 0 5	3 593	33 000	1 833	15	9	36 1 96	2011	16	10
Double Star	16	166	540	28 000	1 750	169	52				
IMP-8	47	2 4 8 5	3835	20 500	436	8	5				
NICER	3	338	2657	18600	1 860	55	7	7 3 7 4	737	22	3
NuSTAR	8	2 2 2 7	9559	18000	1 800	8	2	21 799	2180	10	2
TESS	2	978	4 5 57	16250	1 625	17	4	38 478	3848	39	8
GALEX	17	5452	13790	14000	824	3	1	16780	987	3	1
DEMETER	16	422	1014	6 500	406	15	6	2907	182	7	3

 Order of magnitude estimates of lifecycle carbon footprints for 85 astronomical research infrastructures

- Annual footprints by dividing the lifecycle footprint by the mission or observatory lifetime (or ten years, whatever is longer)
- Results of individual infrastructures are uncertain by 80% (carbon footprint of specific facility could be five times lower or almost two times larger!)

Footprint attribution

- How much of the research infrastructure footprint is to be attributed to IRAP?
- Two methods
 - On the basis of the number of refereed papers co-authored by IRAP scientists
 - Compliant with metrics that are often used in evaluations
 - Adding-up attributions for different labs will exceed total carbon footprint of astronomical research infrastructures due to double counting
 - On the basis of the number of IRAP scientists that co-authored refereed papers
 - Provides the share of the footprint among the laboratories
 - Double counting only occurs for individuals with multiple affiliations